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It is demonstrated that the notion of complementary physical quantities assumes 
the possibility of performing ideal first-kind measurements of such quantities. 
This then leads to an axiomatic reconstruction of the Hilbertian quantum theory 
based on the complementarity principle and on its connection with the measure- 
ment theoretical idealization known as the projection postulate. As the notion of 
complementary physical quantities does not presuppose the notion of probabil- 
ity, the given axiomatic reconstruction reveals complementarity as an essential 
reason for the irreducibly probabilistic nature of the quantum theory. 

1. I N T R O D U C T I O N  

Following Dirac (1958) the usual axiomatic reconstructions of the 
Hilbertian quantum theory take the principle of superposition of states as 
the basic physical principle on which the theory is to be erected. The essence 
of that principle is: Any two (distinct) pure states can be superposed to 
produce a new pure state (distinct from the two others). In this form the 
principle is, however, rather weak. It only excludes the simplicial shape of 
the state space and/or  the Boolean structure of the proposition system. For 
further specifications the principle of superposition of states is, more or less 
explicitly, connected with the measurement theoretical idealization known 
as the projection postulate. Accompanied with the projection postulate the 
principle of superposition of states is then (essentially) enough to determine 
the Hilbertian quantum theory. 

tOn leave from: Department of Physical Sciences, University of Turku, SF-20500 Turku 50, 
Finland. 
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The best-known link between the superposition principle and the 
projection postulate goes through the so-called covering property. On one 
hand, the notion of superposition of states may be provided with the 
symmetry property: If a is a superposition of /3 and 7, then /3 is a 
superposition of 3' and a (and ~, is a superposition of a and /3). This 
property, when properly formulated within the chosen scheme, appears as 
the exchange property of the relevant proposition lattice, which (in the 
atomistic case) is equivalent to the important covering property. On the 
other hand, the covering property, which always implies the exchange 
property, is intimately related to the projection postulate. Namely, the 
existence of a sufficiently rich family of (pure) ideal first-kind measurements 
(described most naturally in terms of the state-transformations) provides the 
relevant proposition lattice with that property, z 

The above link between the superposition principle and the projection 
postulate is very crucial for the aforementioned axiomatic reconstructions. 
However, this link contains nothing essentially quantum theoretical. Really, 
the projection postulate is a general measurement theoretical assumption 
which does not distinguish between classical and quantum theories. This is 
true also of the important covering property, which, in particular, holds in 
any Boolean proposition system. Afortiori, the symmetry property of the 
notion of superposition of states as well as its lattice theoretic counterpart, 
the exchange property, trivially hold also in the classical case. 

The usual axiomatic reconstructions of the Hilbertian quantum theory 
emphasize thus very strongly the principle of superpos,ition of states as the 
basic principle of the quantum theory. However, the essence of the tradi- 
tional quantum theory is contained in the three fundamental quantum 
principles: the superposition principle, the uncertainty principle, and the 
complementarity principle. It is known that some natural formulations of 
these principles are mutually independent (Lahti, 1981a; Lahti and 
Bugajski, 1981). Moreover, the three principles as such are not enough to 
determine the Hilbertian quantum theory (Bugajski and Lahti, 1980). Hence, 
contrary to the usual axiomatic reconstructions, the equal foundational 
status of these principles should be stressed. In this spirit we shall work out 
an alternative axiomatic reconstruction of the Hilbertian quantum theory, 
which is based on the complementarity principle, and on the fact that the 
notion of complementary physical quantities assumes the possibility of 
performing ideal first-kind measurements of these quantities. 

2A detailed and versatile analysis of this link and the resulting axiomatic reconstruction of the 
Hilbert space quantum mechanics is carried out in Beltrametti and Cassinelli (1981). See also 
Varadarajan (1968), Bugajska and Bugajski (1973a), and Guz (1981). Another connection 
between the superposition principle and the projection postulate is proposed in Lahti (1982). 
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The notion of complementary physical quantities receives its most 
natural formulation within the so-called operational or convexity approach, 
which is thus accepted here as the working frame. The basic ingredients of 
this approach are briefly recalled in Section 2, whereafter the notion of 
complementary physical quantities is formulated within that approach 
(Section 3). In Section 4 both intuitive and formal evidence is put forward 
to support the idea that the notion of complementary physical quantities 
assumes the possibility of performing ideal first-kind measurements of these 
quantities. The possibility of performing such measurements on a physical 
system is guaranteed by the projection postulate, which is formulated in 
Section 5. The necessary ingredients of the promised axiomatic reconstruc- 
tion are then put together in Section 6, where it is demonstrated that the 
state-space of an operational scheme which satisfies the complementarity 
principle, and hence as a presupposition the projection postulate, can be 
identified with the Hilbertian one. In this section the Hilbertian quantum 
theory appears as the theory of complementarity as proposed by Pauli 
(1980). In the light of this result the probabilistic nature of the quantum 
theory is reconsidered in Section 7. A formal proof in favor of the old 
doctrine that the complementarity principle implies the irreducibly prob- 
abilistic nature of the quantum theory is given there. In the concluding 
section the significance of the given axiomatic reconstruction of the Hilber- 
tian quantum theory is discussed. Moreover its consequences on the prob- 
lem of determining the structure of the so-called Dirac-Heisenberg-Bohr 
(DHB) quantum theory are pointed out. 

2. THE SCHEME 3 

The basic notion of the scheme is state of a physical system, and the 
basic operation is forming mixtures of states. The set B of all (normalized) 
states of the system will thus be equipped with an algebraic structure which 
allows one to distinguish between the pure and the mixed states of the 
system. This structure, the underlying structure of the approach, is given in 
the following axiom. 

Axiom.  The set of states of a physical system is represented by a norm 
closed generating cone V § for a complete base norm space (V,B). 

3It is sufficient to give a brief summary  of the operational scheme only. In this we follow most 
closely Mielnik (1969), Davis and Lewis (1970), and Edwards (1970). For a more extensive 
discussion of the approach as well as for further references, see Bugajski and Lahti (1981). 
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V is partially ordered by the generating cone V+: for any a, fl in V, 
a ~< fl iff fl - a ~ V +. As the elements of the cone V § are now called states, 
those of the base B are called normalized states. The strictly positive linear 
functional e on V, which, a posteriori, serves to define the set of normalized 
states as B =  ( a ~  V§ e ( a ) = l ) ,  is called the strength functional. The 
fictitious empty state to, the zero vector of V, and only that, has the strength 
0. Because of the convex structure of B, the distinction between pure states, 
extreme elements of B, and mixed states, nonextreme elements of B, can 
now be made. Ex(B) denotes the set of pure states in B. 

The basic idea of the approach is that any change in the system, like 
those caused by measurements on it or those associated with its evolutions, 
can be described through transformations of states of the system. To this 
end the important  notion of operation (state-transformation) is introduced. 
It is assumed that these operations are not too exotic: an operation, when 
performed on the system, will change a given initial state into a well-defined 
final state; it does not increase the strength of any state; it acts additively 
and homogenously on states; it leaves the empty state on its own. Formally, 
an operation is defined as a positive, norm-nonincreasing, linear mapping if: 
V --* V, and the set O of all formally possible operations on the state space V 
is represented as the set of all positive elements in the unit ball of L(V), the 
space of bounded linear operators on V equipped with the strong operator 
topology. 

The set O is a semigroup with zero 0 and unit I, admitting one thus to 
perform sequences of operations on states of the system. Further, it is 
naturally ordered by: for any q5 I, ~2 in O, ~1 ~< q52 iff (~2 - ~l )(a)  ~ V § for 
any state a ~ V § Note also that any operation ~ in O with the property 
e(epa) = e(a)  for any a in B is maximal with respect to that order. 

Any operation ~ leads to a detectable effect when combined with 
detecting the strength of a state after it has undergone the operation ~. 
Thus, for any operation q~ in O there is associated its detectable effect, 
denoted as e o ~, which is a positive linear functional on V with 0 ~ e o ~ ~ e. 
On the other hand, for any positive linear functional a on V such that 
0 ~< a ~< e there is an operation ~ in 0 whose associated effect e o ~ equals 
to a: fix any f l ~  B and define ~a: a ~ e p a ( a ) = a ( a ) f l .  Thus, formally, the 
set of all (formally possible) effects of the physical system is represented by 
the set E of elements a in the dual space (V*,e) of (V,B) satisfying 
0 ~ a ~< e, where the ordering is defined by the dual cone V § * of V +. 

The set E of effects is naturally ordered by: for any a, b in E, a 4 b iff 
( b -  a)(a)>1 0 for any a ~ V § (E,  4 ) is a bounded poset with bounds 0 
and e. Moreover E is closed under the mapping a ~ a • : = e - a, which has 
the properties (a •  = a; if a 4 b then b • 4 a • In general, however, 



Hilbertian Quantum Theory 915 

a ~ a • is not an orthocomplementation as a ^ a • = 0 does not necessarily 
hold in (E,  ~< ). 

The two more basic notions of the theory are instruments and observ- 
ables. An instrument corresponds to an experimental arrangement, defining 
thus a (regular) family of operations which can be performed on the system 
with the arrangement. Thus an instrument 5 is defined as a map from the 
Borel sets B(R) of the real line R into the set of operations which satisfies: 
(i) e(~(R)(v))  = e(v) for every v ~ V; (ii) for any countable family (Ei) of 
pairwise disjoint sets in B(R), ~(U El) = E~(Ei)  where the sum converges in 
the strong operator topology. To each instrument there is associated an 
observable corresponding to the family of the detectable effects of the 
operations performable with the instrument. Thus an observable ~ is 
defined as an effect-valued measure on the real Borel space (R, B(R)) with 
the properties: (i) d~(R)= e; (ii) for any countable family (El) of pairwise 
disjoint sets in B(R) d~(U E~)=E~(E~) ,  where the sum converges in the 
weak*-topology of V*. 

The above ingredients, the axiom and the definitions thereafter, con- 
stitute an operational or convexity or (V, B) scheme for describing a physical 
system. Further specifications are needed in order to provide a full descrip- 
tion, either classical or quantal, of a physical system within that scheme. In 
the following we shall meet with three such specifications, the first given by 
the complementarity principle, the second given by the projection postulate, 
and the third given by the complementarity principle together with the 
projection postulate. 

3. COMPLEMENTARITY 

Complementarity, which embraces probably the most characteristic 
feature of the quantum theory, is a binary relationship: some A is comple- 
mentary to some B. 4 To make it concrete, we follow here Pauli (1980) and 
Bohr (1935) to formulate it as a binary relationship on the set of observables 
on a physical system. Intuitively, we then say that two observables are 
complementary if the experimental arrangements which permit their unam- 
biguous definitions are mutually exclusive. Though this conception does not 
exhaust the general ideas which Bohr developed under his notion of 
complementarity, it, however, contains an important part of that notion. 
Moreover, it is just the above explicated part of the notion of complemen- 
tarity which receives a natural formulation within the chosen scheme so that 

aBohr's notion of complementarity has been discussed and analyzed, e.g., in Jammer (1974), 
Lahti ( 1980), and Scheibe (1973). 
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its connection to the projection postulate can be analyzed. Furthermore, this 
part of the notion of complementarity appears to be sufficient to lead to the 
axiomatic reconstruction of the Hilbertian quantum theory so that no 
further components of that notion are required. 

In the present approach, any instrument 5: B(R) ~ O uniquely defines 
an observable d~: B ( R ) ~  E through the relation ~ ( X ) ( c t ) =  e(5(X)ct) for 
any X in B(R) and ct in B. Moreover, each observable is sodef ined at least 
by one instrument. Thus the above intuitive definition of the notion of 
complementarity can be followed rather closely in the present approach. 
Defining first a relation of mutual exclusiveness of instruments, we then 
follow the above intuitive idea to define complementary observables. As the 
proper definitions have already been discovered we only state them here and 
refer the reader to Lahti and Bugajski (1981) for further argumentation and 
discussion. 

Definition 1. Instruments 51: B(R) ~ O and 52: B(R) --, O are mutually 
exclusive iff 51(X)/x 52(Y ) = 0 for any bounded X and Y in B(R) for which 
neither 51(X ) nor 52(Y ) is maximal. 

Definition 2. Observables ~l :  B(R) ~ E and A2: B(R) ~ E are comple- 
mentary iff any two instruments 51 and 5 2 uniquely defining these observa- 
bles are mutually exclusive. 

The complementarity principle comprises now the requirement for the 
existence of complementary observables. Accordingly, we say that an opera- 
tional description satisfies the complementarity principle if there exists at 
least a pair of (nonconstant) complementary observables. 

An immediate consequence of the above two definitions is that two 
observables ~l  and d~ 2 are complementary iff ~ l ( X ) A  (~2(Y) = 0 for any 
bounded X and Y in B(R) for which neither A.I(X ) nor ~2(Y) equals the 
unit element e of E. Moreover, if two observables ~1 and (~2 are comple- 
mentary in the sense of Definition 2 then they are also probabilistically 
complementary: If ~ j ( X ) ( e t ) = l  for some a ~  B, then t~2(Y)(ct)< 1, and 
conversely, for all bounded X and Y in B(R) such that ~ l ( X )  :~ e ~ t~E(Y). 
However, the two notions of complementary observables are not equivalent. 
Rather, probabilistic complementarity is an essential relaxation of com- 
plementarity in the sense of Definition 2. As it is the mutual exclusiveness, 
given in Definition 2, which prevents any "simultaneous use" of the 
observables in question, we refer to Definition 2 as the definition of 
complementary observables in the sense of Pauli 0980)  and Bohr (1935). 
(For a further discussion of these two features of complementarity, see 
1981b.) 
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The two most important features of a (V, B) description which satisfies 
the complementarity principle are contained in the following two facts 
(Lahti and Bugajski, 1981): (l) The result of a sequential measurement of 
complementary observables depends, in general, on the order in which the 
observables are measured. (2) There exist at least two effects, say a and b, in 
E which are disjoint, i.e., a A b = 0, but which are not "orthogonal," i.e., 
a ~ e - b. A fortiori, E is non-boolean. 

4. COMPLEMENTARITY AND IDEAL FIRST-KIND 
MEASUREMENTS 

There are both intuitive and formal arguments which support the idea 
that the notion of complementary physical quantities assumes the possibility 
of performing ideal first-kind measurements of these quantities. We shall 
express some of them here. 

Calling first for the intuitive arguments we recall that in discussing the 
notion of complementary physical quantities the advocates of this notion 
always stress some ideality in that notion. This ideality is usually dressed in 
expressions like: 5 "an  exact knowledge of the position...results in the 
complete impossibility of determining the momentum. . . "  (Pauli, 1980), or 
" the  unambiguous definition of complementary physical quanti t ies. . ."  (Bohr, 
1935), or "complementary properties.., in their pure f o r m . . . "  (Fock, 1978). 
To reach this "ideality" mutually exclusive conditions/experimental 
arrangements must be made use of. To stress it further, it seems to be a 
basic tenet of the Copenhagen interpretation of the quantum theory that the 
uncertainty relations provide a kind of "relaxation" of complementarity: 
giving up the strict ideality the mutual exclusiveness can be avoided, and the 
possibility for the simultaneous use of the relevant quantities is opened. To 
witness, we complete the above quotation of Fock: 

Complementary properties reveal themselves in their pure form 
only in different experiments held in mutually exclusive condi- 
tions, whereas in conditions of one and the same experiment 
they manifest themselves only in an incomplete, modified form 
(for instance, the incomplete localization in the coordinate and 
the momentum space permitted by the uncertainty relations). 

We turn now to the formal discussion. 
To provide the formal evidence for the above idea we shall discuss the 

most important example of complementary observables, position and 

5The emphasis in the following quotations is ours. 
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momentum observables, in the Hilbertian realization of the present ap- 
proach. The state space is then given as (Ts(H), Ts(H)~ ), where T~(H)~ 
denotes the set of all positive normalized elements (statistical operators) of 
the set T~(H) of all self-adjoint trace-class operators on the underlying 
Hilbert space H, equipped with the trace norm. In particular, we recall that 
in this case the set E of effects can be identified with the set E = (A ~ Ls(H) :  
0 ~< A ~< I) of all self-adjoint operators on H which lie between the null and 
the unit operators 0 and I. 

It is well known that the operations which describe ideal first-kind 
measurements on the system are exactly of the form q~e: T~(H)---, Ts(H), 
a ,--, qJpa = PaP for some projection P ~ P(H).  The resulting effects of such 
operations are exactly the extreme-effects, i.e., the projections on H (cf., 
e.g., Beltrametti and Cassinelli, 1981; Lahti and Bugajski, 1981). On the 
other hand, each physical quantity which can be represented as a self-ad- 
joint operator on H through its unique spectral measure B(R)---, P ( H ) =  
Ex(E) admits, in particular, ideal first-kind measurements. Actually, it is the 
possibility of performing such measurements of an observable, which, a 
posteriori, allows one to represent the observable as a self-adjoint operator. 

We shall now consider the canonically conjugate position and momen- 
tum observables in the sense of a Schr6dinger couple. Thus, without any 
loss in generality, we consider the canonical free-particle position and 
momentum observables Q and P in the Hilbert space H = L2(R). Due to 
their Fourier equivalence P = ( h / 2 ~ r ) F - ~ Q F ,  with F denoting the 
Fourier-Plancherel operator on L2(R ), the spectral measures Q: B(R) 
P(H),  X ~ Q ( X ) ,  and P: B ( R ) ~ P ( H ) ,  Y ~ P ( Y )  of position and 
momentum observables satisfy the operator relation: 

Q ( X ) A P ( Y ) = O  for all bounded X and Yin B(R)  (1) 

Hence position and momentum observables Q and P are complementary in 
the sense of Definition 2. In particular, this indicates that the ideal first-kind 
measurements of these observables are mutually exclusive, and, a fortiori 
there is no ideal first-kind jointmeasurement of these observables. 

Referring now to the notion of fuzzy observable we shall show that 
even the least deviations from the ideal form of position and momentum 
observables are enough to break their complementarity in the sense of 
mutual exclusiveness, and thus to open the possibility of their jointmeasure- 
ments. To this end we shall briefly recall the notion of fuzzy observable. 

Let ~: B(R) ---, P ( H ) ,  X ~  ~ ( X )  be a projection-valued measure (i.e., 
a standard observable), and f :  R ~ R ,  x ~ f ( x )  a probability density 
function. Any such couple (d~, f )  defines, in the weak sense, an effect-val- 
ued measure (a generalized or fuzzy or unsharp or approximate observable) 
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Af: B(R) ~ E, X ~  d~/(X) through the relation 

t r [ a~ / (  X)] = faf(x)tr[ott~ ( X + x)] dx (2) 

The function f is taken to describe the unsharpness involved in the measure- 
ment or the ambiguity involved in the definition of the observable. It is 
important that this function could be attached either to the measuring 
apparatus used to measure the values of the observable (characterizing, e.g., 
the finite resolution of the measuring apparatus), or to the experimental 
arrangement used to define the observable (characterizing thus the ambigui- 
ties involved in the defining procedure). For a more detailed exposition of 
this notion we refer to Ali and Emch (1974), Davies (1976), Prugovecki 
(1976), Ali and Prugovecki (1977). 

We shall now apply the notion of fuzzy observable to form new 
observables from the canonical pair (Q, P). Let Q, and Pm denote the 
fuzzy observables defined by the couples (Q,(n/2)X[_l/,,.~/,,l) and 
(P,(m/2)Xt_~/,,,,i/,,]), respectively, where (n/2)X[-1/,,1/,i denotes the 
normalized characteristic function of the symmetric interval [ - 1 / n ,  1/n] 
with n = 1,2 . . . . .  With increasing n the functions (n/2)X[_ ~/,. ~/,1 approach 
the Dirac delta-function so that w - l im, ~ ooQ, = Q and w - lim m ~ ooPm = 
P. In Lahti (1981) it is shown that 

1.b.(Q.(X),Pm(Y))* (0) f o r a l l X a n d  Y i n B ( R )  (3) 

where 1.b.(., .) denotes the set of lower bounds of the relevant effects in E. As 
the above results holds for any natural numbers n and rn we may conclude 
that even the least deviations from the ideal form of position and momen- 
tum observables are enough to destroy the complementarity of these 
observables in the sense of mutual exclusiveness. However, the fuzzy observ- 
ables Qn and Pm are probabilistically complementary so that none of the 
possible jointmeasurements of these observables which result from (3) is an 
ideal first-kind measurement (cf. Lahti, 1981). Only in the limit n ~ oo and 
m ~ oo, where the observables Q. and P., become again complementary in 
the sense of Definition 2, the possibility for their ideal first-kind measure- 
ments arise. 

We conclude that the given formal result together with the above 
intuitive arguments support the idea that 

The notion of complementary physical quantities assumes 
the possibility of performing ideal first-kind measurements 
of these quantities. 

(4) 
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We emphasize that this assumption is not of a logical necessity, but it 
appears to be well justified. In the next section we shall formulate the 
projection postulate, which in our general scheme guarantees the possibility 
of performing ideal first-kind measurements on the physical system described 
by the state space (V,B). 

5. PROJECTION POSTULATE 

The possibility of performing ideal first-kind measurements of some 
observables is formulated as the projection postulate. In the present ap- 
proach such measurements are most properly described as specially regular 
operations, called filters, whereas the observables in question are most 
appropriately characterized through their ranges, i.e., through a suitable 
subset of effects, called propositions. The projection postulate receives then 
its formulation as a claim for a one-to-one correspondence between the 
distinguished class of operations, filters, and the distinguished class of 
effects, propositions. To formulate this assumption in the present scheme 
the two intended classes of operations and effects should be excavated. 

Let (V, B) be an operational description. The set O / o f  filters is defined 
as a sufficiently rich family of good operations in O. The qualities suffi- 
ciently rich and good, which grasp the qualities pure ideal and first-kind, 
receive their exact meaning below: 

Sufficiency. The set Of c O is sufficiently rich if 
(S1) for any pure state a in Ex(B) there exists uniquely an operation q>~ 

in Of such that e(ep~fl) = e(fl)  implies fl = a for any fl in Ex(B); 
($2) for any operation q~ in Of there exists an operation q / i n  O/such 

that the resulting effects e o q> and e o r are orthogonal in the 
sense that ( e  o ~ , ) •  = e o r 

Purity. An operation ~ in O is pure if 
(P1) ~a  ~ [0, 1]XEx(B) for any a in Ex(B). 

Ideality. An operation ~ in O is ideal if 
(I1) e(~,a)= e(r for any a in Ex(B), with a ' =  e(q~a)-lC?a and q~, 

as in (S1). 

First-kindness. An operation ~ in O is of the first-kind if 
(F1) e(q~a) = e(a) implies Ca = a for any a in Ex(B); 
(F2) e(qj2a) = e(epa) for any a in Ex(B). 

The properties (S1) through (F2) which define the set Of of filters has 
already been discussed in Bugajski and Lahti (1980), where also references 
to some other relevant works can be found. Due to the differences between 
the present approach and the one employed there, some remarks are, 
however, called for. 
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As noted in Bugajski and Lahti (1980), the first sufficiency condition 
(St) expresses the common belief that any pure state a can be produced by 
a particular selection or filtering process r which under the assumptions 
(F1) and (F2) receives the form r = e(r for any/3 in Ex(B). In the 
present scheme for any operation r in O there exists an operation r in O 
such that the effects e o ~ and e o r resulting from the two operations are 
orthogonal. With the second sufficiency condition ($2) one guarantees that 
whenever an effect a results from a "good" operation then also its "nega- 
tion" a • results from a "good"  operation. 6 

The purity (P1) of an operation means simply that it takes a pure state 
onto a pure state with a possible loss in strength. As a pure state may be 
interpreted as a maximal-information state (see, e.g., Mielnik, 1969; 
Beltrametti and Casinelli, 1981), a pure operation leaves the system in a 
maximal-information state whenever it was in a maximal-information state. 

With the so-called ideality assumptions one usually aims at minimaliz- 
ing the influences on the states caused by an operation performed on the 
system. In addition to the purity condition (P1) and the first-kindness 
conditions (F1) and (F2), (I1) aims at that. It claims that an ideal q~ maps 
any pure state a onto the closest to a eigenstate of ~, disturbing thus the 
system to a minimal extent. 

Of the two first-kindness conditions (F1) and (F2), (F1) claims that if 
does not lead to a detectable effect when performed on the system in a pure 
state a then, provided that r is "good enough," it does not alter the state of 
the system, either. According to (F2), a repeated application of a "good"  
operation does not lead to a new effect. 

As an immediate consequence of the defining properties of filters, we 
note that they are not only weakly repeatable [e(~2a) = e(q~a) for any 
a ~  Ex(B)] but also repeatable [q~2a= ~a  for any a ~  Ex(B)], and even 
idempotent (q~2 = q~) provided that any mixed state in B can be decomposed 
into its pure components in Ex(B). Moreover, filters satisfy the most usual 
ideality requirement: if a "good" operation ~1 is performed in the system in 
a pure state a which is an eigenstate of a "'good" operation qh [i.e., 
e(tb2 a) = e(a)]  which commutes weakly with ~l (i.e., q~l ~ ~2 and ~2 ~ ~l lead 
to the same effect), then qh leaves the system in a state which is still an 
eigenstate of ~2- 

The set L of propositions of an operational description (V, B) is defined 
as the set of all extreme-effects a in Ex(E) with nonempty certainly-yes- 
domain a I = (a  ~ Ex(B): a(a) = 1) together with the null-effect 0: 

L = ( a ~  Ex(E):  a = 0 or a'  =~Z) 

6Idea1 first-kind measurements with this property are called perfect measurements by Piron 
(1976). 
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Thus propositions are exactly those extreme-effects, which, if they are 
possible [i.e., a(a)~ 0 for. some a in Ex(B)], can also be actualized [i.e., 
there exists an a in Ex(B) such that a(a)= 1]. As the "fuzzyness" inherent 
in a (V,B)-description may be interpreted as resulting from the possible 
outer disturbances of the system, 7 the restriction to extreme-effects guaran- 
tees that a proposition could describe a realizable property of the system. 

For a given operational description (V,B) the set Of of filters may or 
may not exist, and the set L of propositions may be trivial (0, e). However, 
for any q~ in Of, q~ ~ 0, the resulting effect e o q~ has a nonempty certainly- 
yes-domain (e o q~)l, and for any a in L, a :* 0, one can associate through the 
Sasaki-projection-construction (Cassinelli and Beltrametti, 1975) a filter q'a 
such that the resulting effect e o q~a equals a. Following Bugajski and Lahti 
(1980) the projection postulate is now expressed as a requirement for a 
natural one-to-one correspondence between the distinguished sets Of and L 
of filters and propositions. 

The projection postulate. An operational description (V, B) satisfies the 
projection postulate iff 

1. the set O of operations admits a subset Of of filters, and 
2. there is a natural one-to-one correspondence 4# between the sets Of 

and L with the property a(a)=e(d~(a)a) for every a ~ L  and 
a ~ Ex(B). 

Though the above projection postulate is very restrictive from the 
general formal point of view, it is, however, rather plausible from the 
physical point of view. It guarantees the existence of the important class of 
operations associated with the pure, ideal, first-kind measurements, but it 
does not restrict the theory to deal with such measurements only. Thus, in 
particular, the usual critique against the von Neumann-L0ders  projection 
postulate does not apply here. Really, the major critique against that 
postulate is not so much against the existence of such measurements 
described by the postulate but rather against the (apparently erroneous) 
assumption that such measurements exhaust all the physically relevant 
measurements) 

At the close of this section we point out two important examples of 
convex descriptions which satisfy the projection postulate. 

Consider the state space (Mn(f~), Mn(~)~- ), where the base Mn(f~)~ 
consists of all Radon probability measures on a compact phase space f~. 
Such a description arises from the general scheme essentially with requiring 

7In addition to the relevant results of Section 4 see also Davies (1976), Holevo (1973), and 
Ingarden (1974). 

SFor a review of the rather divergent discussion on the projection postulate see Chap. 11 in 
Jammer (1974) or See. 3.5 in Primas (1981). 
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the unique decomposability of mixed states (cf., e.g., Bugajski, 1981), and it 
leads to the classical phase space theory (cf., e.g., Lahti and Bugajski, 1981). 
In this case one may associate with each Borel subset X ~ B(f~) of the 
phase space f~ an operation Cx: MR(~)---' Mr(f l ) ,  / ~ r  such that 
q,x(/~)(f): = f x f d #  for any continuous function f:  fl ---, R. The correspond- 
ing effect is an extreme effect with a nonempty certainly-yes-domain. One 
may easily verify that the (Ma(~) ,Mr(f~)~-)  description satisfies the 
projection postulate with respect to the couple (O/,L), where O! = (~, ~ O: 
q~ = q'x for some X ~ B(~2)) and L -= B(fl). 

Consider now the Hilbertian state space (T~(H), Ts(H)~(), where the 
base consists of all positive normalized trace-class operators on a complex 
separable Hilbert space H. We shall see that such a description arises from 
the general scheme essentially with requiring the complementarity principle, 
and it leads to the usual quantum Hilbert space theory. In this case one may 
associate with each orthogonal projection P ~ P ( H )  on the Hilbert space H 
an operation q~e: Ts( H)  .--, T~( H), a ,---, r =P~tP. The corresponding effect 
is an extreme effect with a nonempty certainly-yes-domain. One may easily 
verify that the (T~(H), T~(H)( )  description satisfies the projection pos- 
tulate with respect to the couple (O/,L), where O / =  (r ~ O: ~ = r for 
some P ~ P( H)) and L = P( H). 

6. THE RECONSTRUCTION 

In Section 4 both intuitive and formal evidence was given to support 
the idea that the notion of complementary physical quantities assumes the 
possibility of performing ideal first-kind measurements of these quantities. 
In Section 5 the possibility of performing such measurements on the 
physical system was formulated as the projection postulate. From now on 
we accept the view that if an operational scheme satisfies the complementar- 
ity principle then without any further physical assumptions it also satisfies 
the projection postulate. In other words, we propose the following pos- 
tulate: The projection postulate is an idealizing precondition of the com- 
plementarity principle. This assumption has, however, rather strong formal 
consequences for such a description can (essentially) be identified with a 
Hilbertian description. As the procedure which leads to this identification is 
already standard we shall only describe its main steps here. 9 

Let the given (V,B) description satisfy the complementarity principle, 
and hence as a presupposition the projection postulate. Let L be the set of 
propositions of the (V,B) description. According to ($2), if a is a proposi- 
tion then also its negation a _u is a proposition, and vice versa. Hence L is an 

9The details of this rather lengthy mathematical procedure can be found, e.g., in Beltrametti 
and Cassinelli ( 198 I). 
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orthocomplemented poset as a subposet of (Ex(E), ~<, i ). As demonstrated 
in Bugajski and Lahti (1980), any proposition of the form e o ~ ,  a ~ Ex(B), 
is an atom of L. Moreover, the sufficiency condition (S1) leads to a natural 
one-to-one correspondence between the sets At(L) of atoms of L and Ex(B) 
of pure states of B: a ~ e o ~ .  Hence L is atomic, and, as a consequence of 
the complementarity principle, nondistributive. Further, in Bugajski and 
Lahti (1980) it was demonstrated that the ideality condition" (I 1) induces on 
L the covering property provided that L is a (complete) lattice. The 
complete lattice property can be gained either by assuming the separability 
of L or by constructing a natural embedding of L into a complete ortho- 
modular lattice L (Bugajska and Bugajski, 1973b). After that the 
Piron-MacLaren representation theorem can be used to identify L with the 
projection lattice P ( H )  of a separable Hilbert space H. But as the atoms of 
L and the pure states of B stand in a one-to-one correspondence with each 
other, the pure states of the (V, B) description can now be identified with the 
one-dimensional projections on H, i.e., with the extreme elements of the 
base T~(H)~- for the generating cone T~(H) § of the Hilbertian state space 
Ts(H ) on the Hilbert space H. One can now reconstruct the sets O and E of 
all operations and of all effects of the description as O = (~,: Ts(H) ~ T~(H), 
~, is linear, positive, and contracting) and, due to the duality T~(H)*=- 
L s ( H  ), E = (A ~ L s ( H  ), 0 <~ A <~ I). In particular, we now have Ex(E) = 
P ( H ) =  L, and Of = (~ = ~e, P ~ P (H) ) ,  so that the natural correspon- 
dence between the sets L and Of is simply ~ (P)  = ~e. 

To summarize the above discussion, we have the following result: 

Theorem. If a (V,B) description satisfies the complementarity 
principle, and hence as a presupposition the projection postulate, 
then the state space (V,B) can be identified with a Hilbertian one 
(T~(H) ,T~(H)~) .  

7. T H E  PROBABILISTIC NATURE OF TH E QUANTUM 
THEORY 

We shall now apply the above result to provide a formal proof for the 
old doctrine that the complementarity principle is an essential reason for the 
irreducibly probabilistic nature of the quantum theory. 

In the present approach the description of a physical system is based 
on its state space (V, B), and the basic numbers generated by the description 
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are of the form e(~a) with q~ in O and a in B. They are exactly these 
numbers which are to be confronted with the actual measurement results. 
As any operation q~ in O belongs to the range of some instrument 5: 
B(•) ~ O, and as any instrument-(normalized) state pair (5, ~) induces a 
Kolmogorovian probability space (R, B(R), p(~,a)), with the probability 
measure p(5,  a): B(g~) ---, [0, 1], X ~ p(5,  a)( X): = e(~(X)ot),  these numbers 
admit a natural probabilistic interpretation: For any q, in O and a in B, 
e(cka) = p(~, ot)(Y) is the probability that the measurement of the observ- 
able B(R) ---, E, X ~ e o 5(X)  with some of its uniquely defining instruments 
5: B(R) ~ O [q, ~ 5(B(R))] on the physical system in the state ct yields a 
numerical value in the set Y. 

The general (V,B) scheme provides thus a probabilistie scheme for 
describing physical systems. However, the probabilistic nature of the 
scheme is not yet determined. It is open both to reducibly probabilistic 
and to irreducibly probabilistic cases. Really, in the case (V,B)--- 
(M  R (f~), M R (f~)~ ) the notion of probability can essentially be eliminated 
as the pure states, the point measures on f~, are dispersion free over the 
extreme effects, i.e., propositions (cf. Bugajski, 1981). On the other hand, in 
the case (V,B)_--(T~(H), T~(H)~ ) the pure states are not dispersion free, 
and any state a ~ T~(H)~ is a convex combination of at most countably 
many pure states, so that the notion of probability cannot be eliminated in 
this case (cf. Beltrametti and Cassinelli, 1981, p. 265). 

In Section 5 the projection postulate was formulated as a general 
measurement theoretical idealization which does not depend on particular 
classical assumptions or quantum facts. In particular, it is satisfied in 
classical phase space (M n (f~), M R (f~)~- ) description as well as in quantum 
Hilbert space (Ts(H), Ts(H)- ~ ) description. This shows also that the projec- 
tion postulate does not decide whether a (V,B) description satisfying that 
postulate is or is not essentially probabilistic. It simply leaves this question 
open. 

In Section 6 we saw that a (V,B) description which satisfies both the 
complementarity principle and the projection postulate can be identified 
with a Hilbertian description (Ts(H), T~(H)~(). Such a description is irre- 
ducibly probabilistic. As the projection postulate does not decide on that 
feature of the theory we come to the following conclusion. 

Corollary. The complementarity principle is an essential reason for 
the irreducibly probabilistic nature of the quantum theory. 

It is true that the usual axiomatic reconstructions of the Hilbertian 
quantum theory reveal, in the very same way, that the superposition 
principle is an essential reason for the irreducibly probabilistic nature of the 
quantum theory. However, the present solution has one important ad- 
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vantage over the "canonical solution": The notion of complementary physi- 
cal quantities does not explicitly, nor implicitly, refer to the notion of 
probability. Being of nonprobabilistic character the notion of complemen- 
tary physical quantities does not presuppose the notion of probability. 
Hence the given solution is satisfactory. 

8. DISCUSSION 

In the axiomatic reconstruction of the Hilbert-space quantum mechan- 
ics from the superposition principle a crucial step is to establish a connec- 
tion between the superposition principle and the projection postulate. This 
can be done quite naturally by assuming the symmetry property for the 
notion of superposition of states. The link is then provided by the covering 
property of the relevant proposition system, which refers on one hand to the 
symmetry property of the notion of superposition of states, and on the other 
hand to the projection postulate. 

In the present approach, the axiomatic reconstruction of the Hilbertian 
quantum theory is also based strongly on a connection between the basic 
principle, the complementarity principle, and the projection postulate. The 
connection was reached by arguing that the very notion of complementary 
physical, quantities presupposes the possibility of performing ideal first-kind 
measurements of these quantities. 

In both cases the connection between the first principle and the 
projection postulate is not a logical necessity, but, rather, the link appears as 
a well-justified assumption. Thus the two solutions for the axiomatic recon- 
struction of the Hilbert-space quantum theory share a similar status. They 
are based on a fundamental quantum principle and on its more or less 
explicit connection with the measurement theoretical idealization, called the 
projection postulate. 

In the above two cases the fundamental quantum principle receives, 
from the formal point of view, a rather minor role. Its main function, apart 
from motivating the structurally important projection postulate, is to ex- 
clude the extreme case of a completely reducible proposition system, i.e., to 
exclude the Boolean proposition structure. This is actually the common 
feature of any axiomatic reconstruction of the Hilbert-space quantum 
theory applying the Piron-MacLaren representation theorem, as the proper- 
ties assumed by that theorem do not distinguish between the classical and 
the quantum cases. However, it is only in the quantum case where one finds 
it difficult to justify such assumptions, and, in particular, the crucial 
projection postulate. As it appears from the first example of Section 5, the 
projection postulate is a consequence of another measurement theoretical 
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idealization, the classical ideal, which finds its formulation in the require- 
ment for the unique decomposability of mixtures. Thus it could be worth 
emphasizing that it is only in the quantum (or nonclassical) case where the 
projection postulate may become an essential building block of the theory. 
That this is the case in building up the theory either on the superposition 
principle or on the complementarity principle is clearly indicated in the 
above two axiomatic reconstructions of the Hilbert-space quantum theory. 

In the present approach the projection postulate is rather weak. It 
guarantees the existence of sufficiently many ideal first-kind measurements, 
but it does not restrict the theory to such measurements only. As a 
consequence, the resulting Hilbertian quantum theory is a generalization of 
the standard quantum mechanics. This appears, in particular, in the fact 
that the observables are now represented as effect-valued measures and not 
only as projection-valued measures as is the case in the standard theory. 
This feature of the present description underlines thus the importance of 
also other kinds of measurements than those explicated with the projection 
postulate. 

Since Born's proposal for the probability interpretation of the 
Schri3dinger wave function the question of the origin of the notion of 
probability in quantum theory has continuously been discussed. As the 
notion of complementary physical quantities does not presuppose the 
notion of probability, the present axiomatic reconstruction of the Hilbertian 
quantum theory reveals complementarity as an essential reason for the 
irreducibly probabilistic nature of the quantum theory. On the other hand, 
complementarity finds its physical root in the existence of the universal 
quantum of action, symbolized by the h. 

The so-called Dirac-Heisenberg-Bohr quantum theory, which is er- 
rected on the three fundamental quantum principles only, has recently been 
proposed as a candidate for the proper quantum theory (Bugajski and Lahti, 
1980). It was shown that such a quantum theory is a generalization of the 
standard quantum mechanics, but its detailed mathematical structure re- 
mained open. From the present viewpoint the Hilbertian quantum theory 
appears as the theory of complementarity. Thus the DHB-quantum theory 
assumes now the structure of the convex description based on the Hilbertian 
state space (Ts(H), Ts(H)~(). Moreover, the superposition principle and the 
uncertainty principle appear then as but two important corollaries of the 
theory of complementarity. 
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